
mination of the surfacing velocity for X > 0.8. This shortcoming is eliminated with the in- 
troduction of the new characteristic dimension, and system (8)-(11) is changed to the follow- 
ing form: 

ZBo(5) at Z ~  1; Bo(5)<Bo2, (17) 

ZBo 2 a t  Z . ~ I ;  Bo(f )>Bo~,  (18) 
Fr (~/2) = 

Be(8) a t  Z > l ;  Bo(5)<B%,  (19) 

Be 2 -at Z >  I; Bo(f )>Bo2,  (20) 

where Boa = A2, Z = 6 .2  26]'2"~. 

Here, Aa becomes the boundary value of the number Bo(~), with the effect of surface 
forces diminishing above this value (if condition (5) is satisfied, of course). 

NOTATION 

0 ~, 0", density of liquid and gas; o, surface tension; g, acceleration due to gravity; 
Do, diameter of pipe, D~ and D=, external and internal diameters of annular channel; b, 8, 
width and clearance of rectangular channel; Dsh , diameter of shell of rod bundle; U , limiting 
plug surfacing velocity; Z, linear dimension; Be(1) = I//a/g(p' -- 0"), Bond number. 
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THEORY OF GASLIFTS 

Yu. A. Buevich UDC 532.529:622.276.5 

On the basis of a simplified model, a new method is proposed for the analysis of 
unsteady-state gaslifts, and instabilities of steady-state gaslift processes are 
demonstrated. 

A considerable part of the petroleum which is produced is recovered by the use of 
various types of gaslifts for exploiting wells, and the importance of this method in the 
total volume of petroleum produced shows a clear tendency to increase. In this connection, 
the problem of optimizing gaslifts is becoming particularly important, since this is related 
to increasing the production of wells and decreasing their capital and operating costs; the 
solution of this problem is not possible without the effective modeling of the processes 
occurring in gaslifted wells. However, the existing methods of modeling and calculation of 
these processes are unsuitable for analyzing the significantly unsteady-state phenomena which 
occur in gaslifts. In addition, even under steady-state conditions they are not well adapted 
to explaining the distributions of the gas--liquid mixture in the ascending column of the 
well. In fact, these methods are based on semiempirical considerations of the steady-state 
regime only [I], and in principle they do not extend beyond the models proposed as much as a 
generation ago [2]. 

Under the conditions occurring in practice the gas lift process often appears to be 
unsteady-state in nature. Unsteadiness occurs in the process of starting up a well, and may 
also be introduced when the gaslifts are organized to operate batchwise [3]. In addition, 
the steady-state regime sometimes proves to be unstable, which leads ultimately to the genera- 
tion of self-excited oscillations [4]. The author knows of only a single formalized approach 
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towards describing the conditions under which self-excited oscillations arise (see [5]), but 
unfortunately this is completely unable to deal with the physical essentials of the problem. 
The first step in the modeling of a gaslift must therefore definitely consist of generaliza" 
Ing the known models and developing the necessary methods to make it possible to consider 
both the stability of steady-state gaslift processes and the properties of unsteady-state 
gaslifts. This is dealt with in the present paper. 

BASIS OF THE MODEL 

Let us consider a vertical tube which is hydraulically connected at the bottom of the 
well and with a gas-filled space around the tube. Gas is fed into this space from a compres- 
sor at a mass flow rate G, and passes into the tube through a valve placed at a height h c 
above the bottom with a mass flow rate Gg. For simplicity a hydraulic connection between 
the outside space around the tube and the bottom zone is assumed not to exist. Liquid passes 
from the formation into the well bottom and then into the ascending tube with a mass flow 
rate Gf. Such a system obviously consists of the following interacting subsystems: the 
compressor, valve, well bottom, the space surround the tube which is filled with gas, the 
ascending tube which is filled with gas-liquid mixture, and the formation containing the 
liquid. The first three subsystems can be regarded usefully as systems with localized param- 
eters. The same is also true of the fourth subsystem if the weight of the gas and the time 
of propagation of sonic perturbations along the space outside the tube are neglected. How- 
ever, the last two of the subsystems which have been listed above represent systems with 
distributed parameters, which seriously complicates the analysis. 

In the initial stages of the investigation it is natural to consider these distributed 
subsystems separately, since in order to explain the principal aspects of the problem it is 
desirable to simplify as much as possible thepurely computational part, which implies making 
a series of quite restrictive assumptions. In the present paper attention is concentrated on 
analyzing the effects of one of the subsystems with distributed parameters (the ascending pipe 
with the gas-liquid mixture), while the second such Subsystem (the porous formation contain- 
ing the liquid) is described along with the well bottom and the part of the tube filled with 
liquid only as a system with localized parameters by using a relationship which follows 
heuristically from Darcy's theory and which is also assumed in [2]: 

Qj, = = ( p * - - p , ) ,  p* = p ~ - -  ~gh~, 6j = ~,Q~, ,  (1) 

where the coefficient a characterizes the interaction of the well bottom with the formation. 

The characteristics of the gas valve are represented in the form: 

q~, = P (P-- p,), Og = pg,Qg,. (2) 

The characteristics of the compressor determine the mass flow rate of gas which is in- 
jected into the space around the tube in the form of some function of the pressure in this 
space. The form of this function is not importan t in principle, so that here it is assumed 
simply that 

6 = Go = const. (3) 

F i n a l l y ,  t he  c h a r a c t e r i s t i c s  o f  t he  s p a c e  s u r r o u n d i n g  t h e  t u b e  s h o u l d  d e t e r m i n e  t h e  r e l a -  
t i o n s h i p . b e t w e e n  t he  changes  i n  t h e  t o t a l  mass o f  gas  and i t s  p r e s s u r e ,  which  depends  on t he  
n a t u r e  o f  t h e  p r o c e s s e s  o f  c o m p r e s s i o n  and e x p a n s i o n .  For  a p o l y t r o p i c  p r o c e s s ,  

p/pV = const, p =MP/RO, (4) 

where 7 ' : i s  e q u a l  to  u n i t y  o r  to  t h e  a d i a b a t i c  e x p o n e n t  f o r  t h e  p a r t i c u l a r  gas  unde r  i s o t h e r m a l  
or adiabatic conditions, respectively. 

The expansion of the gas rising in the tube will also be described by means of the rela- 
tionship for a polytropic process: 

p/p~ = const, p~ = A4p/ROg, (5) 

wh ich  i s  a n a l o g o u s  t o  ( 4 ) ,  bu t  w i t h  an e x p o n e n t  yg which  i s  d i f f e r e n t ,  g e n e r a l l y  s p e a k i n g .  

The d i s t r i b u t e d  p a r a m e t e r s  c h a r a c t e r i z i n g  t he  a s c e n d i n g  tube  depend p r i m a r i l y  on t he  
flow regime of the gas--liquid mixture in it, and in view of the specificity of such flows 
(see, for instance, [6]), they cannot be specified completely uniquely. In order to eliminate 
this difficulty and simplify the calculations, the presence of slip between the phases in the 
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tube is ignored throughout the treatment here, as is the pressure drop in the tube caused by 
viscous friction and the acceleration on the mixture. The first assumption is approximately 
valid, strictly speaking~ if the rate of rise of the gas bubbles with respect to the mean 
velocity of the mixture is small, so that the velocities of the two phases can be regarded 
as being the same. To a certain extent the second assumption is justified by the fact that 
in practice the main pressure drop along the well line is caused usually by the weight of 
the volume of mixture being driven along it. The possibilities of generalizing to escape 
from these simplifying assumptions will become clear from the presentation below. 

To make the problem well defined, the weight of the gas in the ascending pipe will also 
be neglected and it will be assumed that the liquid does not contain dissolved gas. The pres- 
sure drop in the pipe is then related only to the weight of the column of liquid existing in 
it, where the liquid is assumed to be incompressible, and the gas content is determined from 
the relationship between the masses of gas and liquid being fed to the "inlet" section 
(located at a distance h c above the bottom) through the valve and from the well bottom, 
respectively. 

THE DEFINING EQUATIONS 

In order to analyze the motion of portions of gas and liquid fed into the inlet zone of 
the ascending pipe it seems natural to use the method of Lagrange. At the moment of time to 
assume that the gas and liquid pass into the tube with volumetric rates Qg,(to) and Qf,(to); 
then after a time Ato, volumes Qg,(to)Ato and Qf,(to)Ato of the gas and the liquid will have 
passed into the pipe. At some moment of time t > to this portion of the mixture will have 
risen to a height z(to, t) above the inlet cross section. Since the volume of the portion 
of liquid does not change, as a result of its incompressibility, while the volume of the 
portion of gas increases due to its expansion, the length of the section of tube occupied 
by these volumes at the moment t is given by: 

"T1 [ P~, (to)7) I hi (to, t) = [p~-~0~ Qg* (to) + Ol, (to) Ato. (6) 

The Lagrangian coordinate Z(to, t) can be determined by evaluating the length of the 
lower part of the tube filled by the gas and liquid introduced in the course of the time 
interval (to, t). By using the expression (6) and replacing to by T ~ to and Ato by At, 
carrying out summations over various intervals AT, and converting from sums to the corre- 
sponding integrals at AT + 0, it is found that 

~, L Pg (t, t) 

The pressure p(to, t) at the moment of time t and at the height z(to, t) above the inlet 
cross section of the inlet tube is less than the inlet pressure p,(t) at this moment by the 
value of the weight of liquid in the lower part of the tube of height z(to, t) referred to 
the area of its transverse cross section, i.e., 

t 

p(to, t )=  p, ( t ) - - -~-  j" Q,, (z)dz. (8) 
to 

According to (5), the ratio of densities in Eqs. (6) and (7) becomes 

pg (% t-------) = ,. p (~, t) j (9)  

Suppose that the portion of mixture fed into the tube at the moment to reaches the out- 
let of the tube (the "daylight" surface) at the moment t = to + T(to). It is clear that 
z(to, t) = H, and the pressure p(to, t) = Po, where po is the specified pressure (for in- 
stance, atmospheric pressure) at the outlet. A system of integral equations with lagging 
arguments is therefore obtained from (7) and (8) (the symbol t is introduced instead of to): 

t+T(t) 
PSg 

p,  (t + T (t)) = Po + - T  .f d, ,  
t ( i 0 )  

1 t+i(O [ pe. ('c) Qg, ('c)+ Oy, ('r dT, 
H=-~  t pg(% t+r(t)) 
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and this system is closed by the following relationship which follows from (8) and (9): 

pg(~, t+  T(t)) = p,(T) p , ( t+  T(t))-- Psg t+r(o 
S 

The system of equations (i0) together with the closing relationship (ii) serve for deter- 
mining the two unknown functions, the pressure p,(t) at the inlet to the tube and the time 
fo ascent T(t) of the portion of mixture introduced at the moment of time t. 

By standard methods it is possible to convert from the Lagrangian method of describing 
the motion in the tube using Eqs. (7)-(11) to the Eulerian system. With this objective in 
mind we first define the pressure p(t, x) as a function of time and the longitudinal coordin- 
ate, which are regarded as independent variables. In parametric form it is found that 

/ (t, x)= p(to, t), x=z(to, t), (12) 

where to plays the part of a parameter. From Eq. (9) it is therefore easy to also determine 
the Eulerian density of the gas in the ascending tube, pc(t, x). Then by differentiating Eq. 
(7) with respect to time, and taking into account the formula following from (5) and (8), 

Olnpg(~, t) l [ dp. psg Q#.(l) ] 
Ot Vgp(x, t) dt S ' 

an expression is found for the velocity of the mixture in the tube: 

' t 

u if. x) = ~-- 9, (t. t------T ~ - s pg (~. t) p (x. t) (13) 

The corresponding expression for thegns content ~(t, x) is obvious from a consideration 
of the physical significance of Eq. (6): 

(to) ]-' 
~(l, x )=  1--Qs , [pg(to,'t) Qe, (to) + Q#, (/o) �9 (14) 

In expressions (13) and (14) the quantity to is primarily regarded as a parameter which 
depends on t and x in accordance with Eq. (12), 

It is important that the relationship and Eqs. (6)-(14) are suitable for describing 
within the framework of the simplified model being considered not only steady-state but also 
arbitrary unsteady-state gaslift processes. However, the methods of effective solution of 
the system of integral equations (i0) have clearly been insufficiently developed, which indi- 
cates the need to pose and investigate a series of newmathematical problems. 

STEADY-STATE CONDITIONS 

Under steady-state conditions the quantities Qg*e, Qf*s, and P*s are independent of time, 
and the integrals which appear in the formulas given above are easy to evaluate. As a result, 
the first equation in (i0) assumes the form: 

P,~ = Po + Psg ~ T~, (15) 

and making use of (ii) and (15), the second equation in (i0) becomes 
Vg--__~ 1 

Psg 'Tg--1 Psg Qs.s [ - t i t  P.8 , 

Under isothermal conditions (Tg = i), we find instead of (16): 

H= P,~--Po + P*8 Qg*~ In P,s 
Psg. Psg QI,~ Po 

Under steady-state conditions qg*s = Go/pg,s, and Qf,s can be expressed in terms of 
P,s from (i). It is therefore clear-that (16) or (17) makes it possible to find P,s as a 
function of pf, a, and the system parameters H, p*, po, and G o . From the known value of 
the pressure P*s it is then easy to proceed to find Qf,s and Ps from (i) and (2) and then 
the value of T s from (15). 

(17) 
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The equation for to from (12) has the following form under steady-state conditions: 

Vg-__ i 

S yg--I 9sg (2~,~ [ p , ~ S  ( t - - t o )  , J 
(18) 

or, with yg = i, 

Q *'s (t_to) P',o,g (19) 

From this it can be seen that under steady-state conditions the parameter to has the form 
t -- f(x). If t -- to = T s (x = H), then taking into account the representation for T s which 
follows from (15), equations (18) and (19) reduce to equations (16) and (17), respectively. 

The Eulerian representations for the pressure, velocity, and gas content under steady- 
state conditions are obtained directly from (12)-(14): 

p~ (t, x) = p.~ - -  (p.~ - -  Po) [ (x)/T~, 

1 P.____L_s Qg,~ + Qf,~ , 
u(I, x)=-~- (, pe(t, x), (20) 

[( P*" 1-' q~ (t, x) = 1 - -  Q j . ,  [ k ~ ]  Qg.,, -+- Q , , , _  , 

where the function f(x) = t- to is determined from (18) or (19). 

It should be noted that the applied importance of the results which have been obtained 
is limited, since above the slip between the phases was ignored, as well as the consumption 
of energy for overcoming friction and accelerating the liquid mass in the ascending tube. 
Thus, for example, Eq. (16) or (17) has a single positive root satisfying the inequalities 
P*s < P* and P,s < Po + pfgH, at any value of the parameter, i.e., broadly speaking, ascent 
of the liquid under steady-state conditions appears to be possible regardless of how small 
the gas flow rate is. This conclusion, of course, is not correct, since at small velocities 
of the mixture it is impossible in principle to neglect the effects of slip between the 
phases. However, these results are quite adequate for attaining the main objectives of the 
present work, namely, demonstrating the general procedures for obtaining and investigating 
the stability of the steady-state regime. 

STABILITY OF THE STEADY-STATE REGIME 

Suppose that as a result of random causes the steady-state value Ps of the pressure in 
the space around the tube at the moment of time to varies by some small amount (6P)o, i.e., 
that at t ~to, P(t) = Ps + ~P(t), ~P(to) = (~P)o. Correspondingly, the gas density in this 
space is expressed in the form 

(t) = p~ + 69 (t), 69 = 2_~_, 6___P_P 

This perturbation in the pressure leads to a change in the relationship between the 
volumes of the gas and liquid being fed into the tube, and hence in the total weight of 
liquid in the tube and in the value of the inlet pressure. Therefore at t ~to it is found 
that p,(t) = P*s + ~p,(t), from which it is obvious that 6p,(to) = 0. 

The equation for the conservationof the mass of gas in the space around the tube has 
the form 

d (pV)/dt = Go - -  9g,Qg,. 
Hence, taking Eq. (3)-(5) into account, and assuming for simplicity that the gas temper- 

ature does not vary on passing through the valve (i.e., 8 = eg and Ps/Ps = P*s/P~,s), then to 
an accuracy of terms of the first order with respect to the perturbation the following equa- 
tion is obtained 

V d~ 6 P = - - Y P * s F : 6 P @  ( Y P * ~ F : - - # F s )  6P*, (21) 

where 

F~ = F (y), F's = dF (y)/dywith y = P8 - -  P.~. 
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The second equation for 6P(t) and ~p,(t) can be found by bearing in mind that the dif- 
ference p,(t) -- Po is equal as usual to the weight of all the liquid in the ascending tube 
referred to the area of the tube cross section. Changes of this difference compared with its 
steady-state value arise as a result of two factors. In the first place, after a time t -- to 
from the moment at which the perturbation occurs a quantity of liquid enters the ascending 
tube which is different to the steady-state value. In the second case, because of the pertur- 
bation of the velocity of the mixture a quantity of liquid flows out of the upper and of the 
tube after this time which is also not equal to the quantity which would leave in the steady 
state. Thus, 

6p, (l) = 8~p, (t) + 8~p, (t), (22) 

where the right-hand side of the equation includes the components caused by these two factors. 
The concept of the first term in (22) is clear: 

t 
61p. (t) = Pig 6QI, (T) dr. (23) 

s 
to 

The concept of the second term is obtained by considering that the interval of time t -- 
to is sufficiently small that the analysis can be restricted to effects of the first order 
only with respect to the value of this time interval. During the time t -- to a portion of 
the mixture enters the tubewhich has a gas content differing from the steady-state value; 
this occupies the lower part of the tube whose height (taking into account Eq. (7) and re- 
taining only terms of the first order with respect to the perturbation) is given by 

l i//OgsOg*'(T, t) ~'~g*~n [ og,(*) ] z (to, t) z, (to, t )+  6z (to, t), 6z (to, t) =-~-L (~) + 8Q j. (T) + 6 [pg (T, t)]  Qg**j tiT. 

From (8) and (9) it follows that 

og (T, t) = 08, (T) + 0 (t - -  ~), o~ (T, t) = Og**+ 0 ( t - -  ~). 
Thus, to a linear approximation with respect to t -- to it is found that 

] t 

~z (to, t) = y j" [SQ~, (T) + ~Oj, (T)I dT. 
to 

Taking  i n t o  a c c o u n t  t h a t  above  t h e  l e v e l  z ( t o ,  t )  t h e  s t a t e  o f  t h e  g a s - - l i q u i d  m i x t u r e  
i n  t h e  t u b e  i s  t h e  same as  i n  t h e  s t e a d y - s t a g e ,  t h e n  t o  a l i n e a r  a p p r o x i m a t i o n  w i t h  r e s p e c t  
t o  t -- to  and t o  an a c c u r a c y  o f  t he rms  o f  t h e  f i r s t  o r d e r  w i t h  r e s p e c t  t o  t h e  p e r t u r b a t i o n ,  
t h e  p e r t u r b a t i o n  o f  t h e  volume o f  l i q u i d  l e a v i n g  t h e  t u b e  d u r i n g  t h e  t im e  b e i n g  c o n s i d e r e d  
can  be r e s p r e s e n t e d  a s  f o l l o w s :  

(1- -%JSSz( to ,  t ) =  q~*~ S~z(to, t). 

Hence, 

t 

6op, (0 = - 0 - ,~, ~) 2 ~  j" tsQ~, (~) + ~Qi, (~)l aT. 
t l  

(24) 

Finally, from expression (22)-(24) it is found that 

t 

Oft .I [q)*88Ql* (T) -- (1 -- r 8Qg, (T)] dx. ap, (0 = - ~ -  ~. (25) 

By substituting for the function under the integral in Eq. (25) in terms of 6P(~) and 
6p,(T) in accordance with (1) and (2) and differentiating with respect to time, a second 
linear differential equation is obtained 

S d 
- -  6 p ,  = - -  (1 - -  q~,~) E l  6 P  + [(1 - -  q~,~) F~ - -  qo,~r 8 p , . .  ( 2 6 )  

pyg dt 
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The characteristic equation of the system (21), (26) has the following form (a solution 
of this system proportional to exp(lt) is sought): 

~2+A~+B=O, 

St r ? .. S - -  (1 - -  q~,~) V Fs + ~:,,~Ve , 
Pig (27) 

B =  P,g [ ~' (1 q),8)Fs]F:, 
SV %'q~* ~=P*s ?g 

cp,~ = Qe,~ (Qg,, + QI,A-'- 

Let us now consider the zone of instability. Suppose that A < 0, i.e., that 

l _ ? . c z ( p * - - p , , ) +  F8 p , ,S  F'~:> P* (28) 
= (p* - -  p**) pjgV - -  p,~ 

(here  and below ~,s  i s  expressed  in  terms of F s and a(p* -- P,s)  us ing (1) ,  (2) ,  and the  l a s t  
equation in (27)). In this case, instability Sets in at any value of B. Transformation of 
the inequality (28) shows that instability occurs when the following inequalities are satis- 
fied simultaneously: 

v > v = (p* p,,3 + F~ p,~_._~S, 
o~ (p* --  p,~) Pig (29) 

F~ 1 r[ cz (p* - -  p,8) + F~ p, sS ] - '  
Ps < P *  L 1--~  

- -  p,~ ~ (P* - -  p,,) 01gV J 
or the inequalities 

V > ?  ~ ( p * -  p*~) + Fs p,~S , 
(P* --  P,s) Pig 

F: [ ] - '  (30) 
.>__ 1 ~ ( p * - - p , 8 ) + F s  p,sS 1 

Fs P*--  P,s Y ~ (P* - -  P*~) Pig V ' 

which are imposed on the volume of the space around the tube and on the steepness of the non- 
linear characteristics of the valve, respectively. Oscillations are observed when B > A2/4. 

Now suppose that A > 0, which corresponds to the reverse inequalities (28)-(30). In 
this case for the onset of instability it is necessary that B < O, which after some simple 
rearrangements leads to the inequality 

p* > (1 + Vg) P,~. (31) 

When B > 0 the perturbations are damped, aperiodically when B < A2/4, and with oscilla- 
tions in the opposite case. 

The inequalities (29)-(31) make it possible, in the first place, to investigate the ef- 
fects of various parameters on the breakdown of the stability of the steady-state regime, 
and in the second place, to indicate means for preventing or in the opposite case, for ex- 
citing instabilities. For example, in the case of (31) instabilities can be avoided by in- 
creasing the height h c at which the valve is positioned at a fixed value of p~. 

The physical nature of the breakdown of the stability of the steady-state regime of a 
gaslift is analogous to that occurring in the fluidization of a disperse layer by a gas in 
the presence of free cavities filled with this gas [7, 8]. If the pressure drop in the sta- 
tionary disperse layer is large, the escape of gas through it does not compensate for the 
entry of gas into the cavities from the outside, and energy accumulates in these cavities 
which is stored in the form of the energy of the compressed gas. Upon reaching some critical 
value of the pressure in the free cavities, the bed becomes fluidized, and its pressure drop 
falls sharply. As a result, the excess volumes of gas from the cavities escape rapidly 
through the layer, the bed subsides again, and then the process repeats itself again. Pro- 
cesses of the same type occur in gaslifts, although here the self-oscillations which occur 
are not at all necessarily of a relaxational nature. The analog of the pressure drop of the 
layer with nonlinear characteristics is in the present case the overall resistance of the 
valve and ascending tube. At the same time, there is an important difference: the liquid 
also enters the tube at the same time as the gas, and this influences the inlet pressure. 
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As P increases the passage of the gas into the tube from the space surrounding the tube in- 
creases, which must lead to a decrease of p, in view of the increase in the gas content in 
the tube. However, simultaneously the passage of the liquid from the well bottom zone into 
the tube also increases, decreasing the gas content in it and preventing the increase of p,. 
Thus, the interpretation of the conditions (29)-(31) for the onset of instability is not as 
clear in the present case as in [7, 8]. 

An interesting difference in the evolution of the linear perturbations of steady-state 
gaslift processes in the presence of instabilities from the usual picture of the development 
of hydrodynamic instabilities should be noted. A small perturbation usually increases until 
the inherent system of nonlinearitites stabilizes them at some finite level with the estab- 
lishment of an ordered or chaotic secondary flow. In the present case such stabilization can 
occur in the linear zone as a result of its completely different cause, which is the nonlocal 
nature of the defining equations. In fact, the perturbation of the inlet pressure p, is de- 
termined not so much by the perturbation of the pressure in the space around the tube at the 
same moment as by the value of the perturbation at an interval of time which is relatively 
large, i.e., there is an unusual cumulative effect. The latter can be subjected to analysis 
if the assumption of the smallness of t -- to is not made in the derivative of Eq. (26); in 
this case a considerably more complex equation is obtained which contains the time in ex- 
plicit form. 

NOTATION 

F, nonlinear characteristic of the gas valve; f, value of t -- to in the steady-state 
regime; G, mass flow rate; g, accelerating force of gravity; H, length of active zone of 
ascending tube; hc, height of the valve position; M, molecular weight of gas; P, p, pressures 
inspace surrounding tube and in tube, respectively; p~, pressure in formation; Q, volumetric 
flow rate; R, gas constant; S, cross-sectional area of tube; T, time of passage of portion of 
mixture in tube; t, to, current and initial moments of time; u, velocity of mixture V, volume 
of space surrounding tube; x, longitudinal coordinate; z, Lagrangian coordinate of portion of 
mixture; ~, coefficient of hydraulic resistance of the system formation -- well bottom; 7, 
polytropic exponent; 8, absolute temperature; ~, increment of growth of perturbation; p, 
density; ~, gas content. 

SUBSCRIPTS 

f, g, liquid and gas in tube; s, steady-state parameters; *, inlet parameters. 
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